An integrated electroactive polymer sensor– actuator: design, model-based control, and performance characterization
نویسندگان
چکیده
Ionic electroactive polymers (IEAPs), particularly ionic polymer-metal composites (IPMCs) and carbon-polymer composites (CPCs), bend when a voltage is applied on their electrodes, and conversely, they generate an electrical signal when subjected to a mechanical bending. In this work we study and compare the capabilities of IPMC and CPC actuators and sensors in closedloop control applications. We propose and realize an integrated IEAP sensor–actuator design, characterize its performance using three different materials, and compare the results. The design consists of two short IEAP actuators and one sensor mechanically coupled together in a parallel configuration, and an attached rigid extension significantly longer than the IEAPs. This allows the device to be compliant, simple to construct, lightweight, easy to miniaturize, and functionally similar to a one-degree-of-freedom rotational joint. For control design and accurate position sensing in feedback experiments, we adapt physics-based and control-oriented models of actuation and sensing dynamics, and perform experiments to identify their parameters. In performance characterization, both model-based ¥ H control and proportional-integral control are explored. System responses to step inputs, sinusoids, and random references are measured, and long-duration sinusoidal tracking experiments are performed. The results show that, while IEAP position sensing is stable for only a limited time-span, H∞ control significantly improves the performance of the device.
منابع مشابه
Nonlinear Force Control of Dielectric Electroactive Polymer Actuators
Electroactive Polymers (EAPs) have a great potential to provide smart solutions to engineering problems in fields such as robotics, medical devices, power generation, actuators and sensors. This is because they yield some important characteristics that are advantageous over conventional types of actuators, like: lower weight, faster response, higher power density and quieter operation. Controll...
متن کاملElectroactive Polymer Actuator design for space applications
In order to achieve a distributed actuation in robotics and automation a novel soft actuator technology is being sought worldwide. One of the candidate technologies is based on Electroactive Polymers (EAP). The research to be done in the field of EAP actuators should cover four issues: material improvement, characterization and modeling, actuator design, and applications simulation. Advances on...
متن کاملMicroscale position control of an electroactive polymer using an anti-windup scheme
Smart materials have been widely used for control actuation. In this paper, we present a microscale position control system using a novel electroactive polymer (EAP). We built a third-order model based on the system identification of the EAP actuator with an autoregressive moving average with exogenous input (ARMAX) method using a chirp signal input from 0.01 Hz to 1 Hz with the magnitude limit...
متن کاملLaser Speckle Reduction based on electroactive polymers
Optotune has developed an Electroactive Polymer Actuator-based solution to move a diffuser and drastically reduce the speckle contrast of Laser beams: the LSR-5-17 (Laser Speckle Reducer). With its integrated miniaturized electronics for HV generation and motion control, the LSR-5-17 provides a compact 27 x 21 x 6mm solution with a simple 5V micro USB interface for power supply. A miniaturized ...
متن کاملBio-inspired design of tactile sensors based on ionic polymer metal composites
SUMMARY Ionic polymer metal composites (IPMC) have been widely investigated as newly-emerging materials for transducer applications due to their good performance, such as low weight, good flexibility and large strain. A bio-inspired design was described and applied to build 3-D papillae dome structure for vectorial tactile sensors. INTRODUCTION The electrical-chemical-mechanical effect in ionic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016